

DEPARTMENT OF COMPUTER SYSTEM ENGINEERING Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture #11

Parasitic Capacitance Estimation

Digital Integrated Circuits

	Course topics and Schedule	
	Subject	
	Introduction to Digital Integrated Circuits Design	
2	Semiconductor material: pn-junction, NMOS, PMOS	
3	IC Manufacturing and Design Metrics CMOS	
4	Transistor Devices and Logic Design	
	The CMOS inverter	
5	Combinational logic structures	
6	Layout of an Inverter and basic gates	
	Static CMOS Logic	
8	Dynamic Logic	
9	Sequential logic gates; Latches and Flip-Flops	
10	Summary : Device modeling parameterization from I-V curves.	
	Interconnect: R, L and C - Wire modeling	
	Parasitic Capacitance Estimation	
13	Timing	
14	Power dissipation;	
	Clock Distribution	
16	SPICE Simulation Techniques (Project)	
	Arithmetic building blocks	
18	Memories and array structures	
19	Supply and Threshold Voltage Scaling	
20	Reliability and IC qualification process	
	Advanced Voltage Scaling Techniques	
	Power Reduction Through Switching Activity Reduction	
	CAD tools and algorithms	>
24	SPICE Simulation Techniques (Project)	Γ

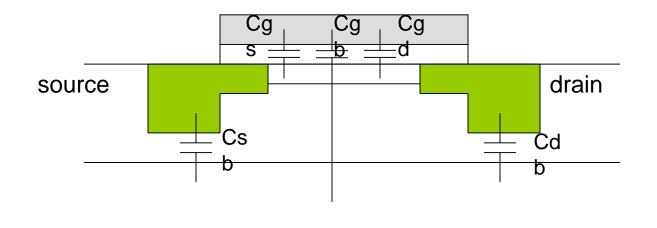
Agenda

Parasitics in Circuit Design

• Where do parasitics come from?

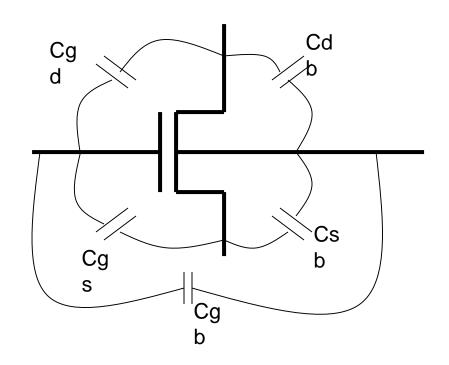
Parasitics Estimation

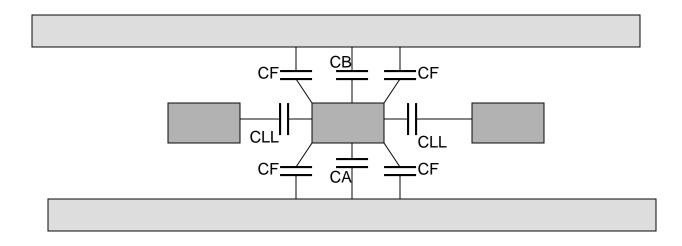
Scaling of parasitics for simulations


What Parasitics are Contained in a Circuit?

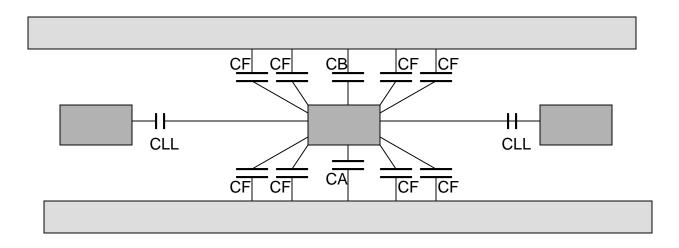
- Transistor related parasitics:
 - Gate Capacitance
 - Diffusion Capacitance

- Interconnect related parasitics:
 - Interconnect Resistance and Capacitance
 - Cross Capacitance (xcap)


Transistor Parasitics


- Cgs, Cgd are gate-to-channel capacitances
- Cgb is gate-to-bulk capacitance
- Csb, Cdb are source/drain diffusion capacitances

Transistor Parasitics


- Cgs, Cgd are gate-to-channel capacitances
- Cgb is gate-to-bulk capacitance
- Csb, Cdb are source/drain diffusion capacitances

Interconnect Parasitics

- CLL Line to line Capacitance
- CA,CB Capacitance to other plane
- CF Fringing Capacitance

Interconnect Parasitics

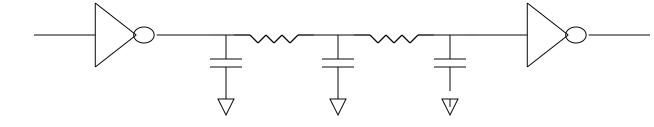
 Adding additional spacing will decrease the value of the CLL, but may cause additional fringing capacitance.

Agenda

Parasitics in Circuit Design

• Where do parasitics come from?

Parasitics Estimation

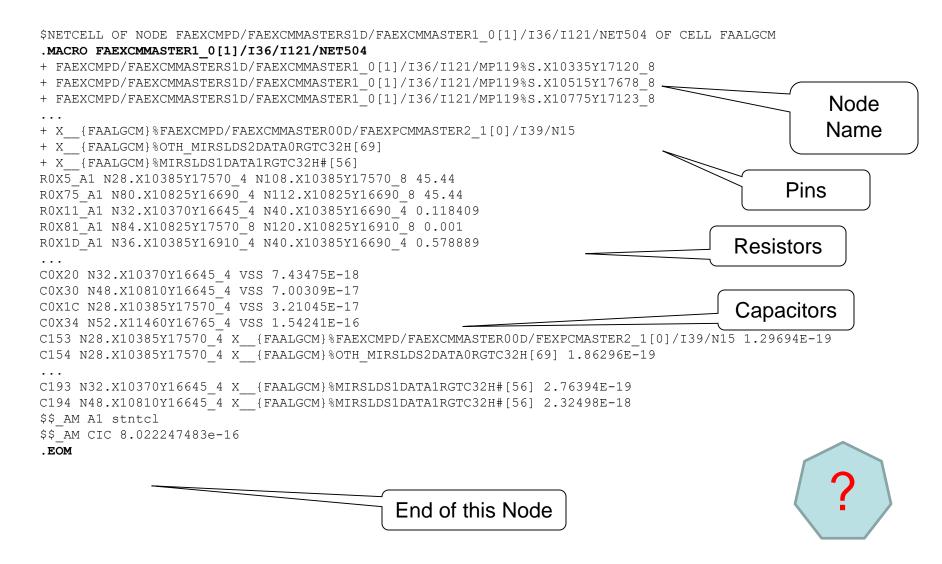

Scaling of parasitics for simulations

Where do Parasitics Come From

- Extraction
 - Different types of extraction tools will use the layout to produce values for device and interconnect parastics.
- Estimation
 - For designs that do not have layout, there are various ways of estimating parasitics.

Lumped or Distributed?

 Distributed Interconnect Parasitics contain Rs and Cs


 Lumped Interconnect Parasitics contain only Cs.

Common Parasitics File Types

- Nets
 - Distributed interconnect parasitics, resistance and capacitance
 - Comes from extraction tool, and can be named for that tool (e.g. mntcl, stntcl, antcl ...)
- Device parasitics
 - Device parasitics, specified in terms of area and perimeter of the devi
 - Also named for the extraction tool (mdpf, adpf, stdpf, ...)
- .xcab
 - Cross capacitance list
 - Lists all "attackers" for each net that is a "victim"
 - Can be generated from the nets file
- .RC
 - Lumped interconnect parasitics, capacitance only
 - Can be generated from the nets file, or estimated.
- Stitched interface
 - Stitched interface and stitched netcell files.
 - Generated from the .ntcl file
- Distributed interconnect
 - Distributed interconnect parasitics, resistance and capacitance, used by timing tool

?

NET File

DPF File

- Lists all devices in the design
- Lists all four nodes connected to the device: drain,gate,source,bulk
- Gives values for device length and width
- Gives values for area/perimeter of drain and source

?

• Example:

@/i7/mp49 p vcc vcc (model=p_i z=0.85 l=0.04 ps=1.13 as=0.119 ad=0.119 pd=1.13 cjs=6.57664e-16 cgate=7.244e-16 cjd=6.57664e-16

RCD File

- Lists of all node in the design
- Has values for total cap, gate cap, interconnect cap, and cross cap.
- Interconnect cap can come from lumping of .ntcl file capacitances, or from estimation.

XTAB File

- Lists each attacker of each node in the design.
- Comes adding the xcap from the .ntcl file

• Example:

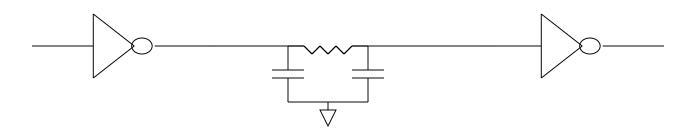
BEGIN_ENTRY /NET510 ATTR XCAP {FMEXPD}%N2 3.88583e-06 {FMEXPD}%N8 7.14513e-06 END_ATTR END_ENTRY

Agenda

Parasitics in Circuit Design

• Where do parasitics come from?

Parasitics Estimation


Scaling of parasitics for simulations

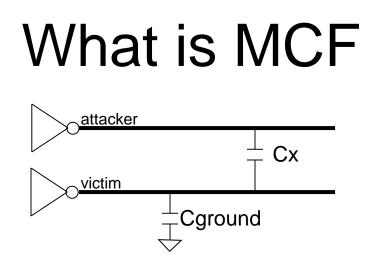
What is Parest?

- When no layout is available for extraction, we must use some tool to estimate the parasitics.
- Estimation can be done for both dynamic and static simulations.
- Estimating devices parasitics is pretty accurate.
 - Size of devices is contained in the schematic.
- Estimating interconnect parasitics is <u>very</u> inaccurate.
 - Length/width/metal_layer of net is not in the schematic

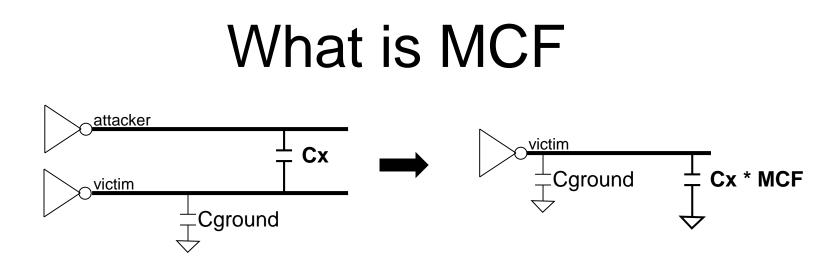
What is an FTRC, and how is it used?

- FTRC (File Tracking Resistor and Capacitors) is a schematic element used to describe the metal interconnect.
- Values are provided by the user for:
 - Length
 - Width
 - MCF
 - Spacing
 - Model (Includes routed metal layer, above metal layer, and below metal layer. For example, rm3m2m4)
- FTC and FTR elements are also available.
- Information stored in the process file is used to determine the value of the Rs and Cs.
- Used for simulation schematics only, not production schematics

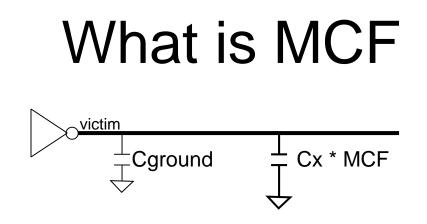
Agenda


Parasitics in Circuit Design

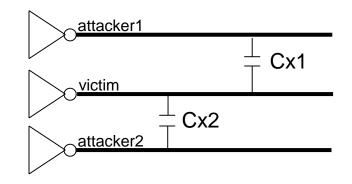
• Where do parasitics come from?



Parasitics Estimation


Scaling of parasitics for simulations

- In the figure above, the time it takes for the "victim" signal to switch can depend on the "attacker" signal.
- The attacker signal can speed up the victim signal if it is switching at the same time and in the same direction as the victim.
- The attacker signal can slow down the victim signal if it is switching at the same time and in the opposite direction as the victim.
- We can model this speed-up or slow-down of the victim timing by increasing or decreasing the value of the Capacitance on that net.
- We will multiply the Cx capacitor by some "MCF" value. (from 0 2).



- MCF is a dynamic property, but can be modeled by static timing tools.
- The cross-capacitor is de-coupled from the attacker and the value is multiplied by the "MCF" factor.
- If the attacker is slowing down the victim, an MCF value of 2.0 is applied. If the attacker is speeding up the victim, an MCF value of 0.0 is applied.

- For Tejas MCF values of 2.0/0.0 (max/min) were applied to all crosscapacitances for signals from the same bus, as they had a high chance of switching at the same time as each other.
- For other signals a backoff of the 2.0/0.0 values was given, and MCF values of 1.5/0.5 were applied.
- Note Capacitances to ground were unaffected ("Cground" in the figure above)
- Yonah/Merom do not use this methodology.
- Each Project must decide what to do about MCF modeling.

What is "Average MCF" ?

- A victim is typically attacked by more than one other net.
- If the MCF between the "victim" and "attacker1" is 2 and the MCF between "victim" and "attacker2" is 1, we could say that the Average MCF of the victim is 1.5.
- We DO NOT use the Average MCF number in any post-layout flow.

How are Parasitics Scaled for Timing Runs?

- Static Timing:
 - Parasitics are extracted at a "typical" corner but values on the actual chips may be slightly different.
 - Because timing runs both a max and min run, we have the option of scaling our "typical" parasitics to make each runs "worst-case".
 - For projectx:
 - In the Max run, all resistances were scaled by 1.15.
 - In the Min run, capacitances were scaled by 0.80
 - For projecty:
 - No resistances were scaled
 - In the Min run, capacitance were scaled by 0.80
- Dynamic Timing:
 - FTRC devices will scale as different process corners are used. Selecting a particular corner will determine if your interconnect is modeled as "fast", "slow", or "typical".